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Abstract
The focus of modern neuroscience on cognitive processes has relegated to behavior the 
epiphenomenal status of neural processing and the difficulties generated by this interpretation have 
encouraged the use of computational models. However, the implementation based on inferred 
cognitive constructs has been inefficient. The objective of this work was to review the concept of 
behavior by a selectionist approach and propose a connectionist computational model that operates 
integrally with its neurophysiological bases. The behavioral phenomenon was functionally defined 
and described at different levels of analysis. Functional levels make it possible to understand why 
behavioral phenomena exist, while topographic levels describe how morphophysiological mechanisms 
implement the response. The connectionist notions of PDP ANNs formalizes the proposal. The model 
stands out for contextualizing neural processing as part of the response, addressing the behavioral 
phenomenon as a whole that needs to be explained in its most different levels of analysis.
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Resumo
O enfoque das neurociências modernas nos processos cognitivos tem relegado ao comportamento 
o status de epifenômeno do processamento neural e as dificuldades geradas por essa interpretação 
incentivaram o uso de modelos computacionais. Entretanto, a implementação pautada em 
construtos cognitivos inferidos tem sido ineficiente. Foi objetivo desse trabalho revisar o conceito de 
comportamento pelo viés selecionista para se propor um modelo computacional conexionista que 
opere integradamente com suas bases neurofisiológicas. O fenômeno comportamental foi definido 
funcionalmente e descrito em diferentes níveis de análise. Os níveis funcionais possibilitam entender 
o porquê do fenômeno comportamental, enquanto que os níveis topográficos descrevem como os 
mecanismos morfofisiológicos implementam a resposta. A formalização do modelo foi realizada com 
noções conexionistas de RNAs de PDP. O modelo se destaca por contextualizar o processamento 
neural como parte da resposta, tratando o fenômeno comportamental como um todo que precisa ser 
explicado em seus mais diferentes níveis de análise.

Palavras-chave: Neurociência, ciências comportamentais, comportamento, conexionismo, redes 
neurais artificiais

Resumen
El enfoque de las neurociencias modernas en los procesos ha relegado al comportamiento el status 
de epifenómeno del procesamiento neural y las dificultades generadas por esa interpretación 
incentivaron el uso de modelos computacionales. Sin embargo, la implementación pautada en 
construcciones cognoscitivas inferidas ha sido ineficiente. Fue objetivo de ese trabajo revisar 
el concepto de conducta por el sesgo seleccionista para proponer un modelo computacional 
conexionista que opere íntegramente con sus bases neurofisiológicas. El fenómeno conductual fue 
definió funcionalmente y descrito en diferentes niveles de análisis. Los niveles funcionales posibilitan 
entender el porqué del fenómeno conductual, mientras que los niveles topográficos describen cómo 
los mecanismos morfofisiológicos implementan la respuesta. La formalización del modelo fue realizada 
con nociones conectivistas de RNAs de PDP. El modelo se destaca por contextualizar el procesamiento 
neural como parte de la respuesta, tratando el fenómeno conductual como un todo que necesita ser 
explicado en sus más diferentes niveles de análisis.
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Introduction

Multidisciplinarity is at the heart of the origins of modern neuroscience, consisting of three 
complementary historical moments. Focused on the basic understanding of the structures and 
functions of the nervous system, in the late 1950s the area took shape with the interdisciplinary 
convergence of the fields of physiology, anatomy, biochemistry and behavioral sciences. 
In the 1980s, molecular biology and genetics techniques were introduced to promote the 
refinement of molecular description of the neural substrates involved in complex behavior 
and its disorders (Cowan, Harter, & Kandel, 2000). In this period, occurred the removal of the 
classic basis of behavioral sciences and the approach of Cognitive Psychology, implementing 
Information Theory as a way to describe the processes that mediate the transformation of 
the sensorial information of the environmental stimulation into perception, memory and 
behavior  (Baars & Gage, 2010). Finally, in the 1990s, the fusion with computational sciences 
was motivated by the interests of the cognitive bases, promoting the use of computational 
models to formally describe mental activity and giving the field an unrivaled breath (e.g. 
Dayan & Abbot, 2001; Koch & Segev, 1998; Kriegeskorte & Douglas, 2018; Sejnowski, 1992).

Cognitive Neuroscience emerged as a metatheory that came from the need to 
understanding the relationship between the nervous system and the behavioral 
phenomenon (Schaal, 2013) and a strong conceptual heritage from Cognitive Psychology. 
Seeking to combine experimental techniques and approaches from the brain sciences with 
those of the behavioral sciences, its main objective is to examine the biological bases of 
higher cognitive functions (Bickle, Mandik, & Anthony, 2012; Cowan et al., 2000; Frank & 
Badre, 2015). With the focus on cognitive processes, behavior has come to be explained 
only as an epiphenomenon of neural processing from which, after repeated observations, 
the explanatory constructs that would causally explain the origins of behavior will be inferred 
(Baars & Gage, 2010; Bickle, 2016). 

However, since the late 1990s, this overly focused inferential approach to cognition 
has bumped into criticism for constantly disregarding the effects of functional relations 
between environment and behavior (Overskeid, 2008). In addition, the need for theoretical 
and experimental understanding of the behavioral phenomenon as an instance that would 
explain the function of neural activity has been repeatedly addressed by the scientific 
community (Cooper & Peebles, 2015; Donahoe & Palmer, 1994; Engel & Schneiderman, 
1994; Marr, 2010; Schlinger, 2015; Ward, Simpson, Kandel, & Balsam, 2012). Even if current 
neuroscientific methods can accurately reveal the structure and functioning of neural cells 
and circuits, there are indications that they do not produce a hierarchical and structural 
description of information processing in the neural system sufficiently complete to causally 
explain behavior (Jonas & Kording, 2017). For this, the implementation of computational 
models has been fundamental and prolific in the description and formalization of these 
neural mechanisms, however it has proved fruitless when implemented as a function of 
verbally defined cognitive constructs (Kriegeskorte & Douglas, 2018). 

As already pointed out in other works (Donahoe & Palmer, 1994; Krakauer et al., 
2017), the a priori study of behavior has been shown to be fundamental for the functional 
understanding of neural activity. The problem of implementation and interpretation of 
neuroscientific data in computational models seems to arise from the misunderstanding of 
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behavioral phenomenon and a consequent limited experimental design, lacking context to 
interpret the meaning of the data. The lack of a conceptual framework based on robust 
behavioral studies impairs the mapping of the relationship between the behavioral data 
and the neural data, making it difficult to elaborate experimental hypotheses and to align 
different levels of description in a single functional explanation.

Being a bridge between theory and practice, the conceptual framework guides the 
researcher’s choice about how to move to still unexplored themes or how to revisit old issues 
under new perspective (Ravitch & Riggan, 2012). In this sense, the treatment of cognition 
as an independent causal variable and behavior as a mere consequent epiphenomenon 
guides and targets the researcher in the visualization and delimitation of the problem (Zilio, 
2013). This understanding theoretically aligns the choices of tools and analytical methods, 
especially how to interpret the experimental data.

Considering the importance of reassessing the concept of behavior, the first part of 
this study will revisit the behavioral sciences, seeking theoretical, methodological and 
experimental subsidies for the functional understanding of the concept of behavior in the 
neuroscientific endeavor. This reflection agrees with previous works that affirm the great 
capacity of formal description of computational models (Donahoe & Palmer, 1994; Donahoe, 
1997; Kriegeskorte & Douglas, 2018). Thus, the second part will turn to the preliminary 
description of an artificial neural network (ANN) - based connectionism model that operates 
with the functional notions of behavior and its neurophysiological bases. The scope is to 
outline an explanatory model that includes ANNs as plausible proximal causal mechanisms 
consistent with a selective view of behavior, so that there is no need to resort to unverifiable 
explanatory constructs.

Exploring Alternatives for a Functional Definition of Behavior

A functional relation consists in conceiving the notion of cause and effect as only the 
description of the relation between an independent variable and a dependent variable. 
In this relationship, manipulations in the dependent variable tend to be accompanied by 
changes in the dependent variable (Skinner, 2003). It is a probabilistic definition that does not 
imply the cause producing an effect, leaving implicit in the identification of these regularities 
the manipulacionist notion and the necessity of verifiability of the phenomenon (Craver, 
2007). Thus, behavior  can be functionally described as the relation between environmental 
events (independent variables) and the actions of the organism (dependent variables), or as 
Skinner describes elsewhere (Skinner, 1966), as being specifically all that an organism do as 
a function of the environment.

In a functional definition of behavior, cognition would not be a causal instance, but a set 
of actions of the organism. In  this  sense,  we  leave  the structural  notion  of  cognition 
that  occupies  a  causal  function behind and  move  to  a  relational  definition  that  
contextualize  the cognitive  phenomenon  as  a  behavioral  event. In this way, we avoid the 
competition between environment and cognition for the causality of the behavior, simplifying 
parsimoniously the understanding of the phenomenon.

Combining evolutionary sciences and the selective notion as a form of causal explanation, 
it is possible to identify three levels of behavioral selection in relation to context (Skinner, 
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1966). The phylogenetic level establishes the own structure of the organism that behaves, 
selecting the species with a relatively low adaptive speed. The ontogenetic level establishes 
the repertoire developed throughout the life by means of the selection of the behavior in the 
interaction of the individual with the environment. A last level, most recent in the temporal 
scale, is the cultural one. It acts strongly on the selection of a specific type of behavioral 
repertoire that is social or verbal, and establishes cultural practices of the subject with a 
very high adaptive speed (Figure 1). It is important to emphasize that all these levels exert 
selective pressure concomitantly, but with distinct mechanisms of operation and time scales.

Figure 1. The Three Levels of Behavioral Selection 

The phylogenetic level is particularly interesting for this work, because it is at this level 
that is established the entire anatomical and physiological structure that will behave. It is 
the very matter selected at the phylogenetic level that will undergo the selective pressures 
of the other levels and will be shaped by the function established in the relation with the 
context. In this sense, the phylogenetic level delimits the topographical possibilities of the 
behavior, that is, how it will take shape. Thus, the behavior function describes why it occurs, 
while the topography describes how it occurs (Skinner, 2003).

Limiting the analysis to a purely topographical level of behavior does not make it possible 
to understand the relation between form and context. Still, however, what is selected in the 
relationship of the organism with the environment is the very set of behavioral topographies 
that are functionally matched to a context. For example, we can hold a glass in various ways, 
describe all movement of the involved muscles and the neural processing responsible for 
the action, however, if we do not identify the contextual relations of this response, it is 
practically impossible to say why it happens. At the same time, the very form of the response 
is directly related to its effectiveness. The response to holding a glass with the left arm is 
either disabled or severely compromised if the structural components involved in this action 
are damaged or absent.

In a behavioral episode (Figure 2) there is a chronological order of events: 1) There is an 
antecedent environmental event that is able to stimulate the organism; 2) The organism 
responds to the environmental stimulus with a set of neurophysiological, homeostatic and 
motor events; 3) Homeostatic and motor events generate changes in the environment 
that lead to response. These consequences affect the organism by altering the probability 
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of similar past responses occurring in similar contexts in the future. If the probability of 
the emission of the response increases in relation to that consequence, we say that the 
behavior had its response reinforced (Catania, 1999). In this sense, learning is understood as 
the very process of structural modifications of the organism according to the consequences 
that directly affect the probabilities of the occurrence of the responses (Skinner, 1966). 
Empirical evidence has shown that learning involves changes in synaptic processes of long-
term potentiation (LTP) and depression (LTD). In addition, gene expression of DNA segments 
results in protein synthesis and consequent structural changes in neurons (Kalat, 2015; 
Kandel, 1989, 1991; Kolb & Whishaw, 2015). 

Figure 2. The Elements of Functional Analysis of a Behavioral Episode

The level of functional analysis of behavior is sufficiently described when the regularity 
relations between events 1, 2 and 3 are identified. The topographic level of analysis occurs 
in the description of the mechanisms involved in the neurophysiological, homeostatic and 
motor events that the organism presents as a function of environmental events. As Craver 
(Craver, 2005) defines, a mechanism is the collection of organized entities and activities to 
do something.  Entities are the structural components of a mechanism, whereas activities 
are the functions performed by components in the context of a particular mechanism. At the 
topographical level of the response, entities are all those structures described by morphology 
while physiology describes its activities.

 Behavioral sciences are interested in the functional levels of behavior. They present 
a certain independence of the neurosciences precisely because they seek to identify 
regularities in the relationship between antecedents, responses and consequences, by 
taking the answer as an indivisible whole (Skinner, 1989). The neurosciences, in turn, are 
interested in the mechanisms underlying the responses, and may or may not contextualize 
them functionally in the environment (Cowan et al., 2000). In Behavioral Neuroscience, 
the traffic between levels of topographic analysis is what will delimit the explanatory 
capacity of the behavioral phenomenon (Krakauer et al., 2017). Therfore, the importance 
of the neuromorphophysiological substrate is proportional to the level of deepening in the 
relationship between topography and function demanded by the research question. 
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With the implementation of the selection in a functional description of the topographical 
aspescts of a response, Behavioral Neurosciences evades the problems that the inferential 
method has generated. However, this description of the topographical aspects of the response 
demands a formalism not found among the behavioral sciences. The biological mechanism 
that implements the funcitonal principle of behaviroal selection is already described by 
neurosciences. In turn, the set of formal techniques to delineate the cumulative effects 
of this principle are best described by the artificial neural network models found among 
connectionist systems (Donahoe, 1997).

Implementing the Connectionism in an Integrated Model

The term connectionism was first attributed to E. L. Thorndike’s theory of animal 
intelligence (Thorndike, 1898) which describes the associations learned between stimuli 
and responses as connections that would be strengthened or weakened according to the 
construction or loss of habits. The seminal work on the Law of Effect (Thorndike, 1933) 
initiated a prototypical neural network theory with strong inferential aspects. However, the 
main idea raised by this theory was that reinforcement not only automatically influenced the 
connections of the specific stimulus-response relationship, but would also influence adjacent 
temporary connections that occurred before or shortly after the availability of the reinforcer.

This premise gave rise to the various types of modern connectionisms that, for the most 
of them, are strongly based on cognitive theories. Particularly interesting for this work is 
Distributed Parallel Processing (PDP) connectionism (McClelland & Rumelhart, 1986a, 1986b). 
This type of connectionism has a formal basis based on Artificial Neural Networks (ANNs), 
which are parallel processing models with great learning capacity and pattern recognition 
inspired by biological neural systems (Dayan & Abbot, 2001). PDP connectionism has a great 
affinity with the selective notions of behavior by approaching the learning processes of its 
ANNs by the consequetiation of its processing as a function of result. In this way, as pointed 
by at other works, this kind of connectionism is able to simulate complex behavior (Donahoe 
& Palmer, 1994; Donahoe, 1997; Donahoe, Burgos, & Palmer, 1993; Donahoe & Dorsel, 1997; 
Donahoe, 1991; Donahoe & Palmer, 1989; Tryon, 2002).

ANNs (Figure 3) are typically described by simple processing units (artificial neurons) 
arranged in interconnected layers by which excitatory and inhibitory signals propagate via 
weighted connections, which have their weights adjusted as a function of a result. The network 
environment is the input patterns that specify external vector values for the first units of an ANN 
or input layer, and by the target or output patterns, which specify the desired activation values 
for the intermediate units in the hidden layers or to the end units in the output layer. Processing 
usually takes place in cycles of iterations in which the signals propagate consecutively through 
the input, hidden and output layers. Each receiving unit will multiply the signals received by the 
synaptic weights of its connections that are in function of the emitting units. The receiving unit 
sum the weighted inputs and this total adjusts the values of its activation function, which will 
transmit the transformed signal to the next layer or emit the output pattern. The adjustments 
of the synaptic weights that will determine the next iterations and, consequently, the learning 
of the network, are performed according to the rules pre-established by the learning function, 
and can occur in a supervised or unsupervised way (McClelland, 2015).
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Figure 3. Artificial Neuron and the Artificial Neural Network

 Despite the inspiration in biology, the ANNs were developed mainly in the technological 
environment of engineering. Because of this pragmatic problem-solving context, ANNs rely 
on simplifications and arbitrariness such as reduced number of parameters, layered topology, 
synchronized work, limited learning algorithms, inefficiently power consumption and static 
stages of training and test that does not correspond to the biological networks that inspired 
them. While these characteristics may generate difficulties in some direct comparisons 
(Rajalingham et al., 2018), they offered practical solutions that help explain the biological 
networks in other works (Majaj, Hong, Solomon, & DiCarlo, 2015). In PDP connectionism, 
the ANNs models could help in describing the proximal mechanisms underlying the response 
of a behavioral event precisely because they offer a common formal language for the 
description of the patterns of neuronal activation. Although the limitations imposed by those 
arbitrariness, they can enable the construction of computational models that maintain more 
biological and behavioral trustworthiness (Barrett, Morcos, & Macke, 2018; Kietzmann, 
McClure, & Kriegeskorte, 2019; Ullman, 2019). 

In the study of Artificial Intelligence, the best models that meets those reliability criteria 
are those from deep learning (Kriegeskorte & Douglas, 2018). As an area of machine learning, 
deep learning consists of obtaining increasingly higher levels of representations in data and 
raw patterns by implementing supervised or unsupervised learning methods in models with 
several layers of nonlinear information processing (Deng & Yu, 2014; Marsland, 2015). The 
traditional architecture of a Deep ANN (DANN) can be basically divide into a pre-processing 
stage of the input pattern that performs feature extraction, followed by an ANN with more than 
one hidden layer responsible for categorizing these patterns. The pre-processing structure 
allows feeding the posterior ANN with already digested information, which facilitates the 
probability of correct categorization and consequent adjustment weights in favor of learning 
(Kriegeskorte, 2015).

The proposed system (Figure 4) integrates the PDP connectionism to the theoretical 
behavioral framework according to the levels of analysis. Behavior is understood as a relation 
between environmental events and the actions of the organism. At its functional level, the 
regularities of the organism’s responses are objectively described in relation to the contextual 
disposition of antecedent and consequent stimuli. The main advantage of this approach is the 
possibility of assessment, manipulation and replication of the phenomenon, which require 
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less inference about the data. These descriptions will make it possible to interpret the reason 
for the behavioral phenomenon without the appeal to inferred hypothetical constructs, since 
the regularity of the phenomenon occurs gradually and selectively.

Figure 4. PDP connectionist model for the behavioral phenomenon and it 
neurophysiological basis

As we delve deeper into the topographic level, we can describe more precisely how the 
organism responds to the environment through the biological mechanisms already identified 
by the neurosciences, formally organizing the system with PDP ANNs models. Environmental 
stimulations are organized according to the types of sensory receptors of the organism, 
being limited to the following formal classes: environment, visceral and proprioceptive. Due 
to phylogenetic pressures, the sensory system of the organism is structurally organized 
to respond to these formal classes, and is organized in exteroceptive, interoceptive and 
proprioceptive pathways. A vector containing sensory elements of the three pathways 
topographically describes the functional definition of environmental stimulus. Damage to an 
organism’s sensory system limits its sensitivity to the context, and functionally impairs the 
development of the response.

With the transduction of the environmental stimuli into neural code by the receptors of 
the sensory systems, the processing of this information will occur in several layers, following 
an architecture compatible with the biological network. These neurophysiological processing 
steps will eventually result in the effector pathways of the motor and homeostatic systems. 
The effectuation of these two systems leads to a physical change in the environmental stimuli 
that will result in a consequentiation of the response by weighting the synaptic connections 
responsible for the output via back propagation and modifying the future probability of that 
effectuation occurring again in relation to similar context.
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Discussion

The proposed model differs from the conventional one (e.g. Donahoe & Dorsel, 1997) 
because it considers neural processing as part of the behavioral response. In this way, 
behavior is understood by the definitions of behavioral theories themselves. It would not 
only be the output of the network or an epiphenomenon of neural processing. The behavioral 
phenomenon is the whole that needs to be explained in its most different levels of analysis. 
All that the organism does as a function of context is behavior – neural processing; motor and 
homeostatic effectuation – are descriptions at the topographical/formal levels of behavioral 
response. They are all part of the phenomenon.

In a big picture, this proposal ends up helping to resolve many questions based on the 
inferential process of causal constructs in a parsimoniously way. The theoretical framework 
points out the steps to be investigated precisely for reference in the physical, manipulative 
and replicable context. Even in studies on ANNs, which are mostly theoretical, the hypotheses 
raised are based directly on morphophysiological data from the nervous system, and there is 
little room for metaphors or conjectures that go beyond the data.

This model is intrinsically multidisciplinary. Although the behavioral sciences devote 
greater efforts to the level of functional analysis, the interface with the neurosciences has 
become increasingly urgent. Functional descriptions have progressively demanded for their 
neurophysiological bases and there is a great need for the development of descriptive and 
theoretical accuracy. PDP connectionism emerges as an already formalized mathematical 
arsenal for describing the underlying networks of behavior. However, the historical separation 
during the formation of the behavioral sciences and the neurosciences generated different 
theoretical contexts. Therefore, the concepts implemented in this study have intrinsic 
epistemological limitations, despite considering what is new in both areas. This is an initial 
attempt to revise the main concepts and theoretical models from both areas in which the 
formal mediation that PDP connectionism offers creates a timely context of collaboration.

Conclusion

As pointed out, deep learning techniques has the potential to help the development of 
computational models that maintain more biological and behavioral trustworthiness. By 
looking for models that substitute non-biological arbitrariness for more biocompatible ones, 
future research could deepen the formalization of the biological networks that corresponds 
to the pre-processing and the classification stages. The thalamo-cortical circuits are a good 
candidate for these studies (Pelaez, 1997; Pelaez & Simoes, 1999). The thalamus integrates 
the exteroceptive, interoceptive and proprioceptive processing, working as a gateway to the 
cortex, which will abstracts refined responses from the input patterns.

The proposal can be further refined with the advances of deep reinforcement learning 
(DRL), an area of machine learning which combines the DANNs with reinforcement learning to 
solve sequential decision making problems (Sutton & Barto, 2017). However, despite sharing 
similar names, there is not much concern for the theoretical rigor of behavioral theories in 
this area. By using the functional definition of behavior proposed here, behavioral science, AI 
research and neurosciences can achieve mutual benefits from this endeavor.  
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